精英家教网 > 高中数学 > 题目详情
如图,在Rt△AOB中,∠OAB=
π
6
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(I)求证:平面COD⊥平面AOB;
(II)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(III)求CD与平面AOB所成角最大时的正切值大小.
精英家教网

精英家教网
(I)由题意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C是直二面角,
又∵二面角B-AO-C是直二面角,
∴CO⊥BO,
又∵AO∩BO=O,
∴CO⊥平面AOB,
又CO?平面COD,
∴平面COD⊥平面AOB.(4分)
(II)解法一:作DE⊥OB,垂足为E,连接CE(如图),则DEAO,
∴∠CDE是异面直线AO与CD所成的角.
在 Rt△COE中,CO=BO=2,OE=
1
2
BO=1

CE=
CO2+OE2
=
5

DE=
1
2
AO=
3

CD=
CE2+DE2
=2
2

∴在Rt△CDE中,cos∠CDE=
DE
CD
=
3
2
2
=
6
4

∴异面直线AO与CD所成角的余弦值大小为
6
4
.(9分)


精英家教网
解法二:建立空间直角坐标系O-xyz,如图,
则O(0,0,0),A(0,0,2
3
)
,C(2,0,0),D(0,1,
3
)

OA
=(0,0,2
3
)
CD
=(-2,1,
3
)

cos<
OA
CD
>=
OA
CD
|
OA
|•|
CD
|
=
6
2
3
•2
2
=
6
4

∴异面直线AO与CD所成角的余弦值为
6
4
.(9分)
(III)由(I)知,CO⊥平面AOB,
∴∠CDO是CD与平面AOB所成的角,
tanCDO=
OC
OD
=
2
OD
.当OD最小时,∠CDO最大,这时,OD⊥AB,垂足为D,OD=
OA•OB
AB
=
3
tanCDO=
2
3
3

∴CD与平面AOB所成角的最大时的正切值为
2
3
3
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△AOB中,∠OAB=
π6
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(Ⅲ)求CD与平面AOB所成角最大时的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△AOB中,∠OAB=
π6
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(1)求证:平面COD⊥平面AOB;
(2)设CD与平面AOB所成角的最大值为α,求tanα值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△AOB中,∠OAB=
π6
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C为直二面角.D是AB的中点.
(I)求证:平面COD⊥平面AOB;
(II)求异面直线AO与CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在 Rt△AOB中,∠OAB=
π6
,斜边AB=4,D是AB的中点.现将 Rt△AOB以直角边AO为轴旋转一周得到一个圆锥体,点C为圆锥体底面圆周上的一点,且∠BOC=90°.
(1)求异面直线AO与CD所成角的大小;
(2)若某动点在圆锥体侧面上运动,试求该动点从点C出发运动到点D所经过的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,在 Rt△AOB中,∠OAB=
π6
,斜边AB=4,D是AB的中点.现将 Rt△AOB以直角边AO为轴旋转一周得到一个圆锥体,点C为圆锥体底面圆周上的一点,且∠BOC=90°.
(1)求该圆锥体的体积;
(2)求异面直线AO与CD所成角的大小.

查看答案和解析>>

同步练习册答案