精英家教网 > 高中数学 > 题目详情

【题目】已知实数p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0
(1)若m=2,那么p是q的什么条件;
(2)若q是p的充分不必要条件,求实数m的取值范围.

【答案】
(1)解:实数p:x2﹣4x﹣12≤0,解得:﹣2≤x≤6,

q:(x﹣m)(x﹣m﹣1)≤0,解得:m≤x≤m+1,

令A=[﹣2,6],B=[m,m+1],

(Ⅰ)若m=2,则B=[2,3],

BA,那么p是q的必要不充分条件;


(2)解:若q是p的充分不必要条件,

即BA,则 ,解得:﹣2≤m≤5(等号不同时成立),

∴m∈[﹣2,5)或m∈(﹣2,5]


【解析】(1)分别解出关于p,q的不等式,将m=2代入q,结合集合的包含关系判断p,q的充分必要性即可;(2)根据集合的包含关系解出关于m的不等式组,从而求出m的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义函数 ,其中x为自变量,a为常数. (I)若当x∈[0,2]时,函数fa(x)的最小值为一1,求a之值;
(II)设全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村投资128万元建起了一处生态采摘园,预计在经营过程中,第一年支出10万元,以后每年支出都比上一年增加4万元,从第一年起每年的销售收入都为76万元.设y表示前n(n∈N*)年的纯利润总和(利润总和=经营总收入﹣经营总支出﹣投资).
(1)该生态园从第几年开始盈利?
(2)该生态园前几年的年平均利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn , n∈N* , 求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,则异面直线A1C与B1C1所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,
(1)求实数m的取值范围;
(2)求以PQ为直径且过坐标原点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.
(1)求PQ的最小值;
(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.

查看答案和解析>>

同步练习册答案