精英家教网 > 高中数学 > 题目详情
经过抛物线y2=4x的焦点作直线交该抛物线于A(x1,y1)、B(x2,y2)两点,如果|AB|=8,那么x1+x2=( )
A.4
B.6
C.8
D.10
【答案】分析:根据抛物线方程可求得准线方程,进而根据抛物线的定义可知|AB|=x1+2+x2+2答案可得.
解答:解:依题意可知p=2,
准线方程为x=-1,
根据抛物线的定义,
可知|AB|=x1+1+x2+1=8
∴x1+x2=6
故选B
点评:本题主要考查抛物线的应用,要牢记抛物线的定义,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经过抛物线y2=4x的焦点,且方向向量为
a
=(1,2)的直线l的方程是(  )
A、x-2y-1=0
B、2x+y-2=0
C、x+2y-1=0
D、2x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆c关于y轴对称,经过抛物线y2=4x的焦点,且被直线y=x分成两段弧长之比为1:2,求圆c的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

倾斜角为
π4
的直线l经过抛物线y2=4x的焦点,且与抛物线相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)若直线l的倾斜角为45°,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)设直线l的斜率为k,当线段AB的长等于5时,求k的值.
(3)求抛物线y2=4x上一点P到直线2x-y+4=0的距离的最小值.并求此时点P的坐标.

查看答案和解析>>

同步练习册答案