精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(x+1)+ax2 , a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(﹣1,0)有唯一零点x0 , 证明:

【答案】
(1)解: ,x>﹣1,

令g(x)=2ax2+2ax+1,△=4a2﹣8a=4a(a﹣2),

若△<0,即0<a<2,则g(x)>0,

当x∈(﹣1,+∞)时,f'(x)>0,f(x)单调递增,

若△=0,即a=2,则g(x)≥0,仅当 时,等号成立,

当x∈(﹣1,+∞)时,f'(x)≥0,f(x)单调递增.

若△>0,即a>2,则g(x)有两个零点

由g(﹣1)=g(0)=1>0,

当x∈(﹣1,x1)时,g(x)>0,f'(x)>0,f(x)单调递增;

当x∈(x1,x2)时,g(x)<0,f'(x)<0,f(x)单调递减;

当x∈(x2,+∞)时,g(x)>0,f'(x)>0,f(x)单调递增.

综上所述,

当0<a≤2时,f(x)在(﹣1,+∞)上单调递增;

当a>2时,f(x)在 上单调递增,

上单调递减.


(2)解:由(1)及f(0)=0可知:仅当极大值等于零,即f(x1)=0时,符合要求.

此时,x1就是函数f(x)在区间(﹣1,0)的唯一零点x0

所以 ,从而有

又因为 ,所以

令x0+1=t,则

,则

再由(1)知: ,h'(t)<0,h(t)单调递减,

又因为

所以e2<t<e1,即


【解析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间;(2)求出 ,得到 ,令x0+1=t,则 ,设 ,根据函数的单调性证明即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}的前四项和S4=14,且a1 , a3 , a7成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,若Tn≤λan+1n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCDA1B1C1D1为正方体,下面结论错误的是 (  )

A. BD∥平面CB1D1 B. AC1BD

C. AC1⊥平面CB1D1 D. 异面直线ADCB1所成的角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=

∠ACD=90°∠EAC=60°AB=AC=AE.

(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论.

(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5m,宽AB=3m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路AC与DM相互垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD的底面ABCD是正方形,EF分别为ACPB上的点,它的直观图,正视图,侧视图如图所示.

(1)EF与平面ABCD所成角的大小;

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,给出以下四个结论:

①D1C∥平面A1ABB1②A1D1与平面BCD1相交;

③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.

其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的值域;

(2)设函数, ,若对于任意, 总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>0)的焦点在x轴上,且椭圆C的焦距为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.

查看答案和解析>>

同步练习册答案