精英家教网 > 高中数学 > 题目详情

【题目】如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5m,宽AB=3m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路AC与DM相互垂直?

【答案】BM=3.2m时,两条小路AC与DM相互垂直.

【解析】试题分析:首先建立平面坐标系,以点B为坐标原点,BC,BA所在直线分别为x轴,y轴建立直角坐标系,由于长方形的长度均知道,故点坐标都是已知的设点M的坐标为(x,0),根据题意只需ACDM,所以kAC·kDM=-1。列出方程,解出即可。

如图,以点B为坐标原点,BC,BA所在直线分别为x轴,y轴建立直角坐标系.

由AD=5m,AB=3m,可得C(5,0),D(5,3),A(0,3).

设点M的坐标为(x,0),

因为AC⊥DM,所以kAC·kDM=-1.

所以·=-1,即x==3.2,即BM=3.2m时,两条小路AC与DM相互垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+ax2 , a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(﹣1,0)有唯一零点x0 , 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2. (Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知二面角α-MN-β的大小为60°,菱形ABCD在平面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥平面α,垂足为O.

(1)证明:AB⊥平面ODE.

(2)求异面直线BC与OD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性,并给出证明;

(2)解不等式:

(3)若函数上单调递减,比较f(2)+f(4)+…+f(2n)与2nnN*)的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案