精英家教网 > 高中数学 > 题目详情
求与轴x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截下的弦长2的圆的方程。
解:设所求圆点方程是(x-a)2+(y-b)2=r2
则圆心(a,b)到直线x-y=0的距离为

即2r2=(a-b)2+14,                                           ①
由于所求圆与x轴相切,∴r2=b2,                   ②
又所求圆心在直线3x-y=0上,
∴3a-b=0,                                                      ③
联立①②③,解得:a=1,b=3,r2=9,或a=-1,b=-3,r2=9,
故所求的圆的方程为(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知半径为6的圆C与x轴相切,圆心C在直线3x+y=0上且在第二象限,直线l过点P(2,14).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l与圆C相交于A、B两点且|AB|=4
5
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求与直线y=x相切,圆心在直线y=3x上且被y轴截得的弦长为2
2
的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与x轴相切,圆心在直线y=3x上,且被直线2x+y-10=0截得的弦长为4,求此圆的方程.

查看答案和解析>>

同步练习册答案