求“方程的解”有如下解题思路:设,则在上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解集为_ __ .
科目:高中数学 来源: 题型:填空题
以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。例如,当,时,,.现有如下命题:
①设函数的定义域为,则“”的充要条件是“,,”;
②若学科网函数,则有最大值和最小值;
③若函数,的定义域相同,且,,则;
④若函数(,)有最大值,则.
其中的真命题有 .(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,)上不是凸函数的是________.
①f(x)=sim x+cos x ②f(x)=ln x-2x
③f(x)=x3+2x-1 ④f(x)=x·ex
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com