精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a为实常数).若f(x)在[2,+∞)上是单调函数,则a的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:求出函数的导数,通过a与0的大小比较,判断导函数的符号,研究函数的单调性,求出a 的范围.
解答: 解:f′(x)=
1
x
-
1
x2
+a=
ax2+x-1
x2

当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f′(x)>0,符合要求.
当a<0时,令g(x)=ax2+x-1,g(x)在[2,+∞)上只能恒小于零,
故△=1+4a≤0或
△=1+4a>0
g(2)≤0
-
1
2a
≤2
解得a≤-
1
4

∴a的取值范围是(-∞,-
1
4
]∪[0,+∞).
故选:B.
点评:本题考查函数的导数应用,函数的单调性以及分类讨论思想的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知 f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)

(Ⅰ)化简f(α);
(Ⅱ)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x+1,则过点(1,-1)的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程式x2+y2=36,记过点P(1,2)的最长弦和最短弦分别为AB、CD,则直线AB、CD的斜率之和等于(  )
A、-1
B、
3
2
C、1
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a,b,c成等比数列,数列a,
b(b-1)
2
,c成等差数列,当1<a<3<c<7时,b的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P,如果:将容器倒置,水面也恰好过点P有下列四个命题:
①正四棱锥的高等于正四棱柱的高的一半;
②若往容器内再注a升水,则容器恰好能装满;
③将容器侧面水平放置时,水面恰好经过点P;
④任意摆放该容器,当水面静止时,水面都恰好经过点P.
其中正确命题的序号为
 
(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P-EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若用m,n表示两条不同的直线,用α表示一个平面,则下列命题正确的是(  )
A、若m∥n,n?α,则m∥α
B、若m∥α,n?α,则m∥n
C、若m⊥n,n?α,则m⊥α
D、若m⊥α,n?α,则m⊥n

查看答案和解析>>

同步练习册答案