精英家教网 > 高中数学 > 题目详情
2.△ABC中,角A,B,C的对边分别为a,b,c,∠A=60°,b=2,c=3,则$\frac{sin2C}{sinB}$的值为$\frac{3\sqrt{7}}{14}$.

分析 由已知及余弦定理可解得a,cosC的值,利用同角三角函数关系式可求sinC,由正弦定理可得sinB的值,从而利用二倍角的正弦函数公式即可求值得解.

解答 解:∵A=60°,b=2,c=3,
∴由余弦定理可得:a2=b2+c2-2bccosA=4+9-2×$2×3×\frac{1}{2}$=7,解得:a=$\sqrt{7}$,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{7+4-9}{2×\sqrt{7}×2}$=$\frac{\sqrt{7}}{14}$,解得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{21}}{14}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$,
∴$\frac{sin2C}{sinB}$=$\frac{2sinCcosC}{sinB}$=$\frac{2×\frac{3\sqrt{21}}{14}×\frac{\sqrt{7}}{14}}{\frac{\sqrt{21}}{7}}$=$\frac{3\sqrt{7}}{14}$.
故答案为:$\frac{3\sqrt{7}}{14}$.

点评 本题主要考查了余弦定理,正弦定理,同角三角函数关系式,二倍角的正弦函数公式的应用,考查了计算能力,熟练掌握相关公式及定理是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.a=log0.20.5,b=log3.70.7,c=2.30.7的大小关系是(  )
A.a<b<cB.b<a<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知R为全集,A={x|$\frac{x+1}{3-x}$≥0},B={x|x2≤5x-6},
(1)求A,B,A∩B,A∪B;
(2)求(∁RA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数f (x),若对任意的实数a、b都有f (a)+f (b)=f (a+b)-3ab(a+b),则称f (x)是“负3倍韦达函数”,则f (x)=x3时,f (x)是一个“负3倍韦达函数”(只须写出一个).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的首项为a1=1,且满足对任意的n∈N*,都有an+1-an=2“成立,则a10=19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log2(x-3),
(1)求f(51)-f(6)的值;
(2)若f(x)≤0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=x2+1,g(x)是一次函数,若f(g(x))=9x2+6x+2则g(x)的解析式为g(x)=3x+1或g(x)=-3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是定义域为R的奇函数.
(1)求a,b的值;
(2)判断f(x)单调性并证明;
(3)若对任意x∈[$\frac{1}{2}$,4]都有f(kx2)+f(2x-1)>0成立,求x范围.

查看答案和解析>>

同步练习册答案