精英家教网 > 高中数学 > 题目详情
求过两点P1(a,b),P2(c,d)的直线的斜率,画出算法的程序框图,并写出相应的程序语句。
解:程序框图如图所示:

程序如下所示:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于两点P1,P2,已知|P1P2|=8.
(1)过点M(3,0)且斜率为a的直线与曲线C相交于A、B两点,求△FAB的面积S(a)及其值域.
(2)设m>0,过点N(m,0)作直线与曲线C相交于A、B两点,若∠AFB恒为钝角,试求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的方程为
x2
a2
+
2y2
a2
=1(a>0)
,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
2

(1)求椭圆的方程;
(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图,已知椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率是
2
2
,P1、P2是椭圆E的长轴的两个端点(P2位于P1右侧),点F是椭圆E的右焦点.点Q是x轴上位于P2右侧的一点,且满足
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2

(Ⅰ) 求椭圆E的方程以及点Q的坐标;
(Ⅱ) 过点Q的动直线l交椭圆E于A、B两点,连结AF并延长交椭圆于点C,连结BF并延长交椭圆于点D.
①求证:B、C关于x轴对称;
②当四边形ABCD的面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)过点M(3,0)作方向向量为
d
=(1,a)
的直线与曲线C相交于A,B两点,求△FAB的面积S(a)并求其值域;
(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案