【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表;
年龄不低于45岁的人 | 年龄低于45岁的人 | 合计 | |
支持“生育二胎” | a= | c= | |
不支持“生育二胎” | b= | d= | |
合计 |
(2)判断是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附表:K2= .
科目:高中数学 来源: 题型:
【题目】某校从参加高三化学得分训练的学生中随机抽出60名学生,将其化学成绩(均为整数)分成六段、、…、后得到部分频率分布直方图(如图).
观察图形中的信息,回答下列问题:
(1)求分数在内的频率,并补全频率分布直方图;
(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在内记0分,在内记1分,在内记2分,用表示抽取结束后的总记分,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)= (a>0,b>0).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是奇函数,求a与b的值;
(3)在(2)的条件下,试证明函数f(x)的单调性,并解不等式f(1﹣m)+f(1+m2)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学高三文科班学生共有人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取人进行成绩抽样统计,先将人按进行编号.
(Ⅰ)如果从第行第列的数开始向右读,请你依次写出最先检测的个人的编号;(下面摘取了第行 至第行)
(Ⅱ)抽的人的数学与地理的水平测试成绩如下表:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地 理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有人,若在该样本中,数学成绩优秀率为,求的值.
(Ⅲ)将的表示成有序数对,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校对甲、乙两个班级进行了物理测验,成绩统计如下(每班50人):
(1)估计甲班的平均成绩;
(2)成绩不低于80分记为“优秀”.请完成下面的列联表,并判断是否有85%的把握认为:“成绩优秀”与所在教学班级有关?
(3)从两个班级,成绩在的学生中任选2人,记事件为“选出的2人中恰有1人来自甲班”.求事件的概率.
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com