【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
【答案】
(1)解:由题意可设函数f(x)=ax2+bx+c(a≠0),则
由f(0)=2得c=2,
由f(x+1)﹣f(x)=2x﹣1得,a(x+1)2+b(x+1)+2﹣ax2﹣bx﹣2=2x﹣1对任意x恒成立,
即2ax+a+b=2x﹣1,
∴ ,
∴f(x)=x2﹣2x+2
(2)解:∵y=f(2t)=(2t)2﹣22t+2=(2t﹣1)2+1,
又∵当t∈[﹣1,3]时, ,
∴ ,(2t﹣1)2∈[0,49],
∴y∈[1,50],
即当t∈[﹣1,3]时,求y=f(2t)的值域为[1,50]
【解析】(1)设函数f(x)=ax2+bx+c(a≠0),由f(0)=2可求得c,由f(x+1)﹣f(x)=2x﹣1,得2ax+a+b=2x﹣1,所以 ,可求a,b,从而可得f(x);(2)y=f(2t)=(2t)2﹣22t+2=(2t﹣1)2+1,由t∈[﹣1,3],可得2t的范围,进而可求得y=f(2t)的值域.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线相切.、是椭圆的左、右顶点,直线过点且与轴垂直.
(1)求椭圆的标准方程;
(2)设是椭圆上异于、的任意一点,作轴于点,延长到点使得,连接并延长交直线于点,为线段的中点,判断直线与以为直径的圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为,求实数a的值;
(2)若弦AB的长为6,求实数a的值;
(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.
(Ⅰ)求与交点的直角坐标系;
(Ⅱ)若与相交于点,与相交于点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程.
(2)O为坐标原点,C为抛物线上一点,若,求λ的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在直线l:y=2x上,且经过点A(﹣3,﹣1),B(4,6).
(Ⅰ)求圆C的方程;
(Ⅱ)点P是直线l上横坐标为﹣4的点,过点P作圆C的切线,求切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上任意一点, 的周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点 (-4,0)任作一动直线交椭圆于两点,记,若在线段上取一点,使得,则当直线转动时,点在某一定直线上运动,求该定直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com