精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

【答案】
(1)解:由题意可设函数f(x)=ax2+bx+c(a≠0),则

由f(0)=2得c=2,

由f(x+1)﹣f(x)=2x﹣1得,a(x+1)2+b(x+1)+2﹣ax2﹣bx﹣2=2x﹣1对任意x恒成立,

即2ax+a+b=2x﹣1,

∴f(x)=x2﹣2x+2


(2)解:∵y=f(2t)=(2t2﹣22t+2=(2t﹣1)2+1,

又∵当t∈[﹣1,3]时,

,(2t﹣1)2∈[0,49],

∴y∈[1,50],

即当t∈[﹣1,3]时,求y=f(2t)的值域为[1,50]


【解析】(1)设函数f(x)=ax2+bx+c(a≠0),由f(0)=2可求得c,由f(x+1)﹣f(x)=2x﹣1,得2ax+a+b=2x﹣1,所以 ,可求a,b,从而可得f(x);(2)y=f(2t)=(2t2﹣22t+2=(2t﹣1)2+1,由t∈[﹣1,3],可得2t的范围,进而可求得y=f(2t)的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在面积为的边上任取一点,则的面积大于的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线相切.是椭圆的左、右顶点,直线点且与轴垂直.

(1)求椭圆的标准方程;

(2)设是椭圆上异于的任意一点,作轴于点,延长到点使得,连接并延长交直线于点为线段的中点,判断直线与以为直径的圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 取一切非负实数时,若,求的范围;

(2)若函数存在极大值,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).

(1)若圆C的半径为,求实数a的值;

(2)若弦AB的长为6,求实数a的值;

(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.

(Ⅰ)求交点的直角坐标系;

(Ⅱ)若相交于点,相交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=2pxp>0的焦点斜率为2的直线交抛物线于Ax1y1),Bx2y2)(x1<x2两点且|AB|=9

1求该抛物线的方程

2O为坐标原点C为抛物线上一点求λ的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线l:y=2x上,且经过点A(﹣3,﹣1),B(4,6).

(Ⅰ)求圆C的方程;

(Ⅱ)点P是直线l上横坐标为﹣4的点,过点P作圆C的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上任意一点, 的周长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点 (-4,0)任作一动直线交椭圆两点,记,若在线段上取一点,使得,则当直线转动时,点在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

同步练习册答案