【题目】已知函数
.
(1)当
,
取一切非负实数时,若
,求
的范围;
(2)若函数
存在极大值
,求
的最小值.
【答案】(1)
(2)![]()
【解析】试题分析:(1)当
时,
,原题分离参数得
恒成立,右边求导求出其最大值即可;(2)对其求导
,当
时,
在
上为单增函数,无极大值;当
时,
在
上为增函数,在
上为减函数,其中
满足
,故可得极大值
,令
,得
,对其求导可得其最小值.
试题解析:(1)当
时,
,
恒成立等价于
恒成立,令
,
,
,当
时,
恒成立,即
在
内单调递减,故
,可得
在
内单调递减,故
.
(2)
,
①当
时,
,所以
,所以
在
上为单增函数,无极大值;
②当
时,设方程
的根为
,则有
,即
,所以
在
上为增函数,在
上为减函数,所以
的极大值为
,即
,因为
,所以
,令
则
,
设
,则
,令
,得
,所以
在
上为减函数,在
上为增函数,所以
得最小值为
,即
的最小值为-1,此时
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为:
.
(Ⅰ)求曲线
的普通方程和直线的直角坐标方程;
(Ⅱ)过点
且与直线平行的直线
交
于
,
两点,求点
到
,
两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,短轴的两个端点分别为
.
(Ⅰ)若
为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆
的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,短轴的两个端点分别为
.
(Ⅰ)若
为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆
的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
平面
,
//
,
,
,
分别为
线段
,
的中点.
(Ⅰ)求证:
//平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)写出三棱锥
与三棱锥
的体积之比.(结论不要求证明)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
![]()
(1)求样本容量
和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在
内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com