【题目】已知圆C的圆心在直线l:y=2x上,且经过点A(﹣3,﹣1),B(4,6).
(Ⅰ)求圆C的方程;
(Ⅱ)点P是直线l上横坐标为﹣4的点,过点P作圆C的切线,求切线方程.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 平面, // , , , 分别为
线段, 的中点.
(Ⅰ)求证: //平面;
(Ⅱ)求证: 平面;
(Ⅲ)写出三棱锥与三棱锥的体积之比.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求实数a的范围,使y=f(x)在区间[﹣5,5]上是单调函数.
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=log 为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为)购买这四种新产品的情况,记录如下(单位:件):
顾 客 产 品 | |||||||||||||||
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照, , , , 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在, 的数据).
(1)求样本容量和频率分布直方图中的、的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,离心率,它的长轴长等于圆的直径.
(1)求椭圆 的方程;
(2)若过点的直线交椭圆于两点,是否存在定点 ,使得以为直径的圆经过这个定点,若存在,求出定点的坐标;若不存在,请说明理由?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com