| A. | 12π | B. | 3π | C. | $\frac{π}{6}$ | D. | 2π |
分析 证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.
解答 解:∵三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,![]()
∴△PAB≌△PAC≌△PBC.
∵PA⊥PB,
∴PA⊥PC,PB⊥PC.
以PA、PB、PC为过同一顶点的三条棱,作长方体如图:
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{3}$,
∴球直径为$\sqrt{3}$,半径R=$\frac{\sqrt{3}}{2}$,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×($\frac{\sqrt{3}}{2}$)2=3π.
故选:B.
点评 本题考查了长方体对角线公式和球的表面积计算等知识,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OA}$,$\overrightarrow{BC}$ | B. | $\overrightarrow{OA}$,$\overrightarrow{CD}$ | C. | $\overrightarrow{AB}$,$\overrightarrow{CF}$ | D. | $\overrightarrow{AB}$,$\overrightarrow{DE}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 300 m | B. | 200$\sqrt{2}$ m | C. | 200$\sqrt{3}$ m | D. | 300$\sqrt{2}$ m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com