精英家教网 > 高中数学 > 题目详情
(2011•资阳一模)已知实数a、b满足等式log 
1
2
a+log3b=0.给出四个关系式:①0<a<b<1;②b>a>1;③a=b;④0<a<1<b.其中不可能成立的关系式的个数是(  )
分析:利用对数的运算法则可得lo
g
a
2
=lo
g
b
3
,作出图象f(x)=lo
g
x
2
,g(x)=lo
g
x
3
.y=t,即可比较出.
解答:解:∵实数a、b满足等式log 
1
2
a+log3b=0,∴-lo
g
a
2
+lo
g
b
3
=0
,∴lo
g
a
2
=lo
g
b
3

如图所示,f(x)=lo
g
x
2
,g(x)=lo
g
x
3

作y=t,可知:0<b<a<1,a=b=1,1<a<b.
因此②③正确,①④不可能.
故选B.
点评:熟练掌握对数的运算法则和对数函数的图象性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•资阳一模)已知函数f(x)=|2x-1|+|x+2|+2x(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:指数函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资阳一模)△ABC中,∠A=
π
3
,BC=3,AB=
6
,则∠C=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资阳一模)“cosθ<0且tanθ>0”是“θ为第三角限角”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资阳一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
π
6
取得最大值2,方程f(x)=0的两个根为x1、x2,且|x1-x2|的最小值为π.
(1)求f(x);
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的
1
2
,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[-
π
4
π
4
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资阳一模)函数f(x)=ax3-6ax2+3bx+b,其图象在x=2处的切线方程为3x+y-11=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数y=f(x)的图象与y=
13
f′(x)+5x+m
的图象有三个不同的交点,求实数m的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线y=f(x)围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案