D.
【命题意图】本题考查二元一次不等式(组)表示的平面区域、直线的斜率、三角形面积公式等基础知识,考查数形结合思想,容易题.
科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题
如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:
(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.
【解析】(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,
∵CF∥AB, ∴BCFD是平行四边形,
∴CF=BD=AD, 连结AF,∴ADCF是平行四边形,
∴CD=AF,
∵CF∥AB, ∴BC=AF, ∴CD=BC;
(Ⅱ) ∵FG∥BC,∴GB=CF,
由(Ⅰ)可知BD=CF,∴GB=BD,
∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题
已知曲线的参数方程是(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:的极坐标方程是=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为上任意一点,求的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)设,令=,
则==,
∵,∴的取值范围是[32,52]
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题
如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴面, 又∵面,∴,
由题设知,∴=,即,
又∵, ∴⊥面, ∵面,
∴面⊥面;
(Ⅱ)设棱锥的体积为,=1,由题意得,==,
由三棱柱的体积=1,
∴=1:1, ∴平面分此棱柱为两部分体积之比为1:1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com