精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.

解:(1)因为函数f(x)=-lnx,
所以f′(x)=,令f′(x)=0得x=±2,
因为x∈[1,3],
当1<x<2时 f′(x)<0;当2<x<3时,f′(x)>0;
∴f(x)在(1,2)上单调减函数,在(2,3)上单调增函数,
∴f(x)在x=2处取得极小值f(2)=-ln2;
又f(1)=,f(3)=
∵ln3>1∴
∴f(1)>f(3),
∴x=1时 f(x)的最大值为
x=2时函数取得最小值为-ln2.
(2)由(1)知当x∈[1,3]时,f(x)
故对任意x∈[1,3],f(x)<4-at恒成立,
只要4-at>对任意t∈[0,2]恒成立,即at恒成立
记 g(t)=at,t∈[0,2]
,解得a
∴实数a的取值范围是(-∞,).
分析:(1)直接求出函数的导数,通过导数为0,求出函数的极值点,判断函数的单调性,利用最值定理求出f(x)的最大值与最小值;
(2)利用(1)的结论,f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,转化为4-at>对任意t∈[0,2]恒成立,通过,求实数a的取值范围.
点评:本题考查函数与导数的关系,函数的单调性的应用,考查函数的导数在闭区间上的最值的求法,考查计算能力,恒成立问题的应用,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案