精英家教网 > 高中数学 > 题目详情
(理)函数y1=f(x)的定义域D1,它的零点组成的集合是E1,y2=g(x)的定义域D2,它的零点组成的集合是E2,则函数y=f(x)g(x)零点组成的集合是
 
(答案用E1、E2、D1、D2的集合运算来表示)
分析:根据函数零点的定义,由y=f(x)g(x)=0,得f(x)=0或g(x)=0,然后根据集合关系即可得到结论.
解答:解:由y=f(x)g(x)=0,
得f(x)=0或g(x)=0,
∵y1=f(x)的定义域D1,y2=g(x)的定义域D2
∴函数y=f(x)g(x)的定义域为D1∩D2
∵y1=f(x)的零点组成的集合是E1,y2=f(x)的零点组成的集合是E2
∴y=f(x)g(x)=0的零点为(E1∪E2)∩(D1∩D2),
故答案为:(E1∪E2)∩(D1∩D2
点评:本题主要考查函数零点的应用,以及基本的基本运算,注意求函数的零点前必须要求函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn),…(n∈N*)顺次为某直线l上的点,点A1(x1,0),A2(x2,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a≤1).对于任意的n∈N*,△AnBnAn+1是以Bn为顶点的等腰三角形.

(1)证明xn+2-xn是常数,并求数列{xn}的通项公式.

(2)若l的方程为y=,试问在△AnBnAn+1(n∈N*)中是否存在直角三角形?若存在,求出a的值;若不存在,请说明理由.

(文)已知函数f(x)=ax3x2+cx+d(a、c、d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a、c、d的值.

(2)若h(x)=x2-bx+,解不等式f′(x)+h(x)<0.

(3)是否存在实数m,使函数g(x)=f′(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市嘉定区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

(理)已知函数,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案