| an+3 |
| an |
| 1 |
| 4 |
| an |
| an-1 |
| 1 |
| n-1 |
| 1 |
| 2 |
| an+3 |
| an |
| a4 |
| a1 |
| ||
| 1 |
| 1 |
| 6 |
| an+3 |
| an |
| (n-1)! |
| (n+2)! |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
| 1 |
| 4 |
| an |
| an-1 |
| 1 |
| n-1 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| 2 |
| 1 |
| (n-1)! |
| an+3 |
| an |
| a4 |
| a1 |
| ||
| 1 |
| 1 |
| 6 |
| an+3 |
| an |
| ||
|
| (n-1)! |
| (n+2)! |
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 2•3 |
| 1 |
| 3•4 |
| 1 |
| 3•4 |
| 1 |
| 4•5 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 2•3 |
| 1 |
| (n+1)(n+2) |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 4 |
科目:高中数学 来源:吉林省吉林一中2011-2012学年高三阶段验收试题数学 题型:解答题
(理)已知数列{an}的前n项和
,且
=1,![]()
.
(I)求数列{an}的通项公式;
(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有
< f’(x)”.若且函数y=xn+1
在(0,+∞)上是凹函数,试判断bn与bn+1的大小;
(III)求证:≤bn<2.
(文)如图,|AB|=2,O为AB中点,直线
过B且垂直于AB,过A的动直线与
交于点C,点M在线段AC上,满足=.
(I)求点M的轨迹方程;
(II)若过B点且斜率为- 的直线与轨迹M交于
点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为
锐角三角形时t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com