£¨Àí£©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒ=1£¬

.

£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»

£¨II£©ÒÑÖª¶¨Àí£º¡°Èôº¯Êýf(x)ÔÚÇø¼äDÉÏÊÇ°¼º¯Êý£¬x>y(x,y¡ÊD)£¬ÇÒf¡¯(x)´æÔÚ£¬ÔòÓÐ

< f¡¯(x)¡±£®ÈôÇÒº¯Êýy=xn+1ÔÚ(0,+¡Þ)ÉÏÊÇ°¼º¯Êý£¬ÊÔÅжÏbnÓëbn+1µÄ´óС£»

£¨III£©ÇóÖ¤£º¡Übn<2.

(ÎÄ)Èçͼ£¬|AB|=2£¬OΪABÖе㣬ֱÏß¹ýBÇÒ´¹Ö±ÓÚAB£¬¹ýAµÄ¶¯Ö±ÏßÓë½»ÓÚµãC£¬µãMÔÚÏ߶ÎACÉÏ£¬Âú×ã=.

£¨I£©ÇóµãMµÄ¹ì¼£·½³Ì£»

£¨II£©Èô¹ýBµãÇÒбÂÊΪ- µÄÖ±ÏßÓë¹ì¼£M½»ÓÚ

         µãP£¬µãQ(t,0)ÊÇxÖáÉÏÈÎÒâÒ»µã£¬Ç󵱦¤BPQΪ

         Èñ½ÇÈý½ÇÐÎʱtµÄÈ¡Öµ·¶Î§£®

 

 

 

 

¡¾´ð°¸¡¿

 £¨Àí£©(1)Sn=an£¬¡àSn+1=an+1£¬an+1=Sn+1-Sn=an+1-an£¬¡à= (n¡Ý2)         (2¡¯)

¡à==¡­==1£¬¡àan+1=n£¬an=n-1 (n¡Ý2)£¬ÓÖa1=0£¬¡àan=n-1                  (4¡¯)

   £¨2£©bn+1=(1+ )n+1£¬bn=(1+ )n£¬

¡ß<(n+1)¡¤(1+ )n                                   (7¡¯)

ÕûÀí¼´µÃ£º(1+ )n<(1+ )n+1£¬¼´bn<bn+1                              (8¡¯)

(3)ÓÉ(2)Öªbn>bn-1­>¡­>b­1=                                               (10¡¯)

ÓÖCnr¡¤()r=(¡¤¡¤¡­)¡¤()r¡Ü()r£¬(0¡Ür¡Ün)£¬

¡àbn¡Ü1+ +()2+¡­+()n=2-()n<2£¬¡à¡Übn<2                          (14¡¯)

¿¼µã½âÎö£ºÕâÖÖ¡°Ð¸ÅÄÌâÐèÒª½ÏºÃµÄÀí½â¡¢·ÖÎöÄÜÁ¦£¬·ÅËõ·¨Ö¤Ã÷²»µÈʽÊDz»µÈʽ֤Ã÷µÄ³£Ó÷½·¨£¬Ò²¾ßÓÐÒ»¶¨µÄÁé»îÐÔ£¬Æ½Ê±Òª×¢ÖظÅÄîµÄѧϰ£¬³£¼ûÌâÐ͵ĻýÀÛ£¬Ìá¸ß˼άÄÜÁ¦ºÍÁªÏë±äͨÄÜÁ¦£®

£¨ÎÄ£©£¨1£©ÉèA£¨a,0£©,B(0,b),P(x,y),Óɵ᪡ª2¡¯

ÓɵõãP¹ì¼£·½³ÌΪ¡ª¡ª2¡¯

µ±Ê±£¬CµÄ·½³ÌΪ¡ª¡ª1¡¯

ÉèÖ±Ïß·½³ÌΪÓëC·½³ÌÁªÁ¢µÃ-1=0

Ò×µÃ

¡ª¡ª2¡¯

µãQµ½Ö±ÏߵľàÀëΪ¡ª¡ª2¡¯

µÃ£¬µ±ÇÒ½öµ±-2ʱ¡ª¡ª1¡¯

SÓÐ×î´óÖµ¡ª¡ª2¡¯

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an=
12
an-1+1£¨n¡Ý2£©£¬
£¨1£©ÇóÖ¤£ºÊýÁÐ{an-2}ÊǵȱÈÊýÁУ¬²¢ÇóͨÏîan£®
£¨2£©Çó{an}Ç°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªÊýÁÐ{an}£¬SnÊÇÆäÇ°nÏîºÍ£¬Sn=1-an£¨n¡ÊN*£©£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÁîÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬bn=£¨n+1£©an£¬ÇóTn£»
£¨3£©Éècn=
3an
(2-an)(1-an)
£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍRn£¬ÇÒRn£¼¦Ë+
m
¦Ë
(¦Ë£¾0£¬m£¾0)
ºã³ÉÁ¢£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒa1=-2£¬a1+a2+a3=-12£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôb1=0£¬bn+1=7bn+6£¬n¡ÊN*£¬ÇóÊýÁÐ{an£¨bn+1£©}µÄÇ°nÏîºÍTnµÄ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬Ç°nÏîºÍΪSn£¬an+1=
pan+n-1(nΪÆæÊý)
-an-2n(nΪżÊý)
£®
£¨1£©ÈôÊýÁÐ{bn}Âú×ãbn=a2n+a2n+1£¨n¡Ý1£©£¬ÊÔÇóÊýÁÐ{bn}Ç°3ÏîµÄºÍT3£»
£¨2£©ÈôÊýÁÐ{cn}Âú×ãcn=a2n£¬ÊÔÅжÏ{cn}ÊÇ·ñΪµÈ±ÈÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©µ±p=
1
2
ʱ£¬¶ÔÈÎÒân¡ÊN*£¬²»µÈʽS2n+1¡Ülog
1
2
(x2+3x)
¶¼³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªÊýÁÐ{an}Ç°nÏîºÍSn=-ban+1-
1
(1+b)n
ÆäÖÐbÊÇÓënÎ޹صij£Êý£¬ÇÒ0£¼b£¼1£¬Èô
limSn
n¡ú¡Þ
´æÔÚ£¬Ôò
limSn=
n¡ú¡Þ
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸