精英家教网 > 高中数学 > 题目详情
(理)已知数列{an}满足a1=1,an=
12
an-1+1(n≥2),
(1)求证:数列{an-2}是等比数列,并求通项an
(2)求{an}前n项和Sn
分析:(1)由an=
1
2
an-1+1(n≥2),两边减去2,得出an-2=
1
2
(an-1-2),易知数列{an-2}是等比数列,通过数列{an-2}的通项求出an
(2)由(1)an=(-1)•(
1
2
)n-1
+2,利用分组即公式法求和.
解答:解:(1)由an=
1
2
an-1+1(n≥2),两边减去2,得出an-2=
1
2
(an-1-2),
数列{an-2}是等比数列,且公比
1
2
,首项为a1-2=-1,所以数列{an-2}的通项公式为
an-2=(-1)•(
1
2
)n-1
,an=(-1)•(
1
2
)n-1
+2,
(2)数列{an}可以看做等比数列{(-1)•(
1
2
)n-1
}与等差数列{n}的和.
所以Sn=-(
1-(
1
2
)n
1-
1
2
)+
n(n+1)
2
=-2+
1
2n-1
+
n(n+1)
2
点评:本题考查数列和通项公式、数列求和,考查转化计算、推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知数列{an},Sn是其前n项和,Sn=1-an(n∈N*),
(1)求数列{an}的通项公式;
(2)令数列{bn}的前n项和为Tn,bn=(n+1)an,求Tn
(3)设cn=
3an
(2-an)(1-an)
,数列{cn}的前n项和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}是等差数列,且a1=-2,a1+a2+a3=-12.
(1)求数列{an}的通项公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求数列{an(bn+1)}的前n项和Tn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(1)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前3项的和T3
(2)若数列{cn}满足cn=a2n,试判断{cn}是否为等比数列,并说明理由;
(3)当p=
1
2
时,对任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}前n项和Sn=-ban+1-
1
(1+b)n
其中b是与n无关的常数,且0<b<1,若
limSn
n→∞
存在,则
limSn=
n→∞
1
1

查看答案和解析>>

同步练习册答案