精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
4-
y
2
 

对应的曲线中存在“自公切线”的有(  )
分析:化简函数的解析式,结合函数的图象的特征,判断此函数是否有自公切线.
解答:解:①、x2-y2=1 是一个等轴双曲线,没有自公切线;
②、y=x2-|x|=
(x-
1
2
 )
2
-
1
4
(x+
1
2
 )
2
-
1
4
,在 x=
1
2
 和 x=-
1
2
 处的切线都是y=-
1
4
,故②有自公切线.
③、y=3sinx+4cosx=5sin(x+φ),cosφ=
3
5
,sinφ=
4
5

此函数是周期函数,过图象的最高点的切线都重合,故此函数有自公切线.
④、由于|x|+1=
4-y2
,即 x2+2|x|+y2-3=0,结合图象可得,此曲线没有自公切线.
故答案为 C.
点评:本题考查函数的自公切线的定义,函数图象的特征,准确判断一个函数是否有自公切线,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案