精英家教网 > 高中数学 > 题目详情

【题目】维生素C又叫抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.维生素C虽不直接构成脑组织,也不向脑提供活动能源,但维生素C有多种健脑强身的功效,它是脑功能极为重要的营养物.维生素C的毒性很小,但食用过多仍可产生一些不良反应.根据食物中维C的含量可大致分为:含量很丰富:鲜枣、沙棘、猕猴桃、柚子,每100克中的维生素C含量超过100毫克;比较丰富:青椒、桂圆、番茄、草莓、甘蓝、黄瓜、柑橘、菜花,每100克中维生素C含量超过50毫克;相对丰富:白菜、油菜、香菜、菠菜、芹菜、苋菜、菜苔、豌豆、豇豆、萝卜,每100克中维生素C含量超过30~50毫克.现从猕猴桃、柚子两种食物中测得每100克所含维生素C的量(单位:)得到茎叶图如图所示,则下列说法中不正确的是(

A.猕猴桃的平均数小于柚子的平均数

B.猕猴桃的方差小于柚子的方差

C.猕猴桃的极差为32

D.柚子的中位数为121

【答案】B

【解析】

A. 根据茎叶图分别算出猕猴桃的平均数和柚子的平均数比较即可.B. 根据茎叶图中的数据的波动情况判断C. 根据茎叶图中的数据计算即可.D. 根据茎叶图中的数据计算即可.

由茎叶图知,猕猴桃的平均数为,柚子的平均数为,则猕猴桃的平均数小于柚子的平均数,故A正确;

猕猴桃的数据波动比柚子的数据波动大,所以猕猴桃的方差大于柚子的方差,故B错误;

猕猴桃的极差为,故C正确;

柚子的中位数为,故D正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,点是函数图象上不同的两点,则为坐标原点)的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,侧面底面,底面是平行四边形,中点,点在线段上.

(Ⅰ)证明:

(Ⅱ)若 ,求实数使直线与平面所成角和直线与平面所成角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,交圆两点,过点的平行线交于点.

(1)求的值;

(2)设点的轨迹为曲线,直线与曲线相交于两点,与直线相交于点,试问在椭圆上是否存在一定点,使得成等差数列(其中分别指直线的斜率).若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科学家在研究物体的热辐射能力时定义了一个理想模型叫“黑体”,即一种能完全吸收照在其表面的电磁波(光)的物体.然后,黑体根据其本身特性再向周边辐射电磁波,科学研究发现单位面积的黑体向空间辐射的电磁波的功率与该黑体的绝对温度次方成正比,即为玻尔兹曼常数.而我们在做实验数据处理的过程中,往往不用基础变量作为横纵坐标,以本实验结果为例,为纵坐标,以为横坐标,则能够近似得到______(曲线形状),那么如果继续研究该实验,若实验结果的曲线如图所示,试写出其可能的横纵坐标的变量形式______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)设直线轴的交点分别为,若点在曲线位于第一象限的图象上运动,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点都在椭圆C上,且过椭圆的左焦点FO为坐标原点,M上,且.

1)求点M的轨迹方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式p=f(k).

2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1.

(i)求证:数列为等比数列;

(ii)时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.

查看答案和解析>>

同步练习册答案