精英家教网 > 高中数学 > 题目详情

已知圆过定点,圆心在抛物线上,为圆轴的交点.

(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.

(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.

(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

 

【答案】

(1);(2)是定值,为2;(3)取得最大值,此时圆的方程为

【解析】

试题分析:(1)这是关于圆的基本计算问题,圆心是抛物线的顶点,又圆过点,可得圆半径为,就得出了圆的方程,抛物线的准线为,与圆相交弦长可用直角三角形法求解,弦心距,弦的一半,相应半径可构成一个直角三角形,应用勾股定理易得;(2)圆心在抛物线上运动,可设圆心坐标为,与(1)同法可得弦长,当然本题中弦在轴上,故可在圆方程中令,求出,也即求出为定值;(3)根据圆的性质,由(2)可得两点的坐标为,这样就可用来表示,可求得时,有时,利用基本不等式有,从而(当且仅当,即时等号成立),故所求最大值为

试题解析:(1)抛物线的顶点为,准线方程为,圆的半径等于1,圆的方程为.弦长         4分

(2)设圆心,则圆的半径

的方程是为:    6分

,得,得

是定值.      8分

(3)由(2)知,不妨设

.      11分

时,.      12分

时,

当且仅当时,等号成立          14分

所以当时,取得最大值,此时圆的方程为

            16分

考点:(1)抛物线的几何性质,圆的弦长公式;(2)圆的弦长;(3)基本不等式与最大值问题.

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年广东省六校高三第 一次联考理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且

(1)求动点的轨迹的方程;

(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省高三第6次月考理科数学试卷(解析版) 题型:选择题

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且,动点的轨迹为,已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,则的最大值为  

A.               B.           C.                  D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:选择题

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且,动点的轨迹为,已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,则的最大值为 (  ▲  )

A.                B.           C.                  D.

 

查看答案和解析>>

科目:高中数学 来源:2010年黑龙江省高二上学期期中考试数学理卷 题型:解答题

(本题13分) 已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且

(1)求动点的轨迹的方程;

(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高二上学期期中考试理科数学卷 题型:解答题

(13分)已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且

(1)求动点的轨迹的方程;

(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

 

查看答案和解析>>

同步练习册答案