精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2+bx+c)e2,其中b,c∈R为常数.
(I)若b2>4c-1,讨论函数f(x)的单调性;
(II)若b2≤4(c-1),且
lim
x→∞
f(x)-c
x
=4
,试证:-6≤b≤2.
分析:(1)可用导数的知识求其单调性,注意到对题目中条件b2>4c-1的运用,即保证导函数有两个零点,再进行计算.
(2)注意到f′(0)=c,则上述极限式变形为
lim
x→∞
f(x)-f(0)
x-0
=f′(0),再结合不等式求解.
解答:解:(I)求导得f′(x)=[x2+(b+2)x+b+c]e2
因b2>4(c-1).故方程f′(x)=0即x2+(b+2)x+b+c=0有两根.
x1=-
b+2
2
-
b2-4(c-1)
2
x2=-
b+2
2
+
b2-4(c-1)
2

令f′(x)>0.解得x<x1或x>x2
又令f′(x)<0.解得x1<x<x2
故当x∈(-∞,x1)时,f(x)是增函数;当x∈(x2,+∞)时,f(x)也是增函数;
但当x∈(x1,x2)时,f(x)是减函数
(II)易知f(0)=c,f'(0)=b+c,因此
lim
x→∞
f(x)-c
x
=
lim
x→∞
f(x)-f(0)
x
=f(0)=b+c

所以,由已知条件得
b+c=4
b2≤4(c-1)
,因此b2+4b-12≤0
解得-6≤b≤2.
点评:本题中给定了不等式关系,减小了题目的难度,避免了对导函数是否有零点和有几个零点的讨论,此外,对于导数定义的考查也在本题中体现出来.注意到其中代换的技巧c=f′(0).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案