【题目】已知函数![]()
(1)讨论函数
的单调性;
(2)若函数
有两个极值点
,证明:![]()
【答案】(1)见解析;(2)证明见解析.
【解析】
(1)首先对函数求导,根据韦达定理与判别式确定二次函数根的分布,然后根据函数值的正负确定函数的单调性;
(2)首先求出
,然后在对求出的表达式进行切线缩放即可证明不等式.
(1)由题知函数的定义域为
,
有
,
对
有
,
当
时
,有
,
所以函数
在
上单调递增,
当
时
,
有两个根
,
,设
,
根据韦达定理有
,
,
当
时,
有两个正根
,
,
可知当
时
,函数
单调递增,
当
时
,函数
单调递减,
当
时
,函数
单调递增,
当
时,
有两个根
,
,
可知当
时
,函数
单调递减,
可知当
时
,函数
单调递增;
(2)由(1)知当
时,函数有两个极值点
,
,设
,
根据(1)中单调性可知函数
在
处取极大值,
处取极小值,
所以
,
代入
,
,
整理得
,
令
,有
,
有
,
因为
,
代入
有
.
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)当
时,求函数
在
处的切线方程;
(2)记函数
的导函数是
,若不等式
对任意的实数
恒成立,求实数
的取值范围;
(3)设函数
,
是函数
的导函数,若函数
存在两个极值点
,
,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上任意一点
满足
,直线
的方程为
,且与曲线
交于不同两点
,
.
(1)求曲线
的方程;
(2)设点
,直线
与
的斜率分别为
,
,且
,判断直线
是否过定点?若过定点,求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,该几何体是由一个直三棱柱ABE﹣DCF和一个四棱锥P﹣ABCD组合而成,其中EF=EA=EB=2,AE⊥EB,PA=PD
,平面PAD∥平面EBCF.
![]()
(1)证明:平面PBC∥平面AEFD;
(2)求直线AP与平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:
星名 | 水星 | 金星 | 地球 | 火星 | 木星 | 土星 |
与太阳的距离 | 4 | 7 | 10 | 16 | 52 | 100 |
除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是( )
A.388B.772C.1540D.3076
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一项是
,接下来的两项是
,再接下来的三项是
,……,以此类推,求满足如下条件的最小整数
且该数列的前
项和为2的整数幂,那么该软件的激活码是________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,
是抛物线
:
的焦点,
是抛物线
上位于第一象限内的任意一点,过
,
,
三点的圆的圆心为
.
(1)是否存在过点
,斜率为
的直线
,使得抛物线
上存在两点关于直线
对称?若存在,求出
的范围;若不存在,说明理由;
(2)是否存在点
,使得直线
与抛物线
相切于点
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,倾斜角为
的直线
的参数方程为
(
为参数).在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)若直线
与曲线
交于
,
两点,且
,求直线
的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com