精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论函数的单调性;

2)若函数有两个极值点,证明:

【答案】1)见解析;(2)证明见解析.

【解析】

1)首先对函数求导,根据韦达定理与判别式确定二次函数根的分布,然后根据函数值的正负确定函数的单调性;

2)首先求出,然后在对求出的表达式进行切线缩放即可证明不等式.

1)由题知函数的定义域为

,有

所以函数上单调递增,

有两个根,设

根据韦达定理有

时,

有两个正根

可知当,函数单调递增,

,函数单调递减,

,函数单调递增,

时,

有两个根

可知当,函数单调递减,

可知当,函数单调递增;

2)由(1)知当时,函数有两个极值点,设

根据(1)中单调性可知函数处取极大值,处取极小值,

所以

代入

整理得

,有

因为

代入.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求函数处的切线方程;

2)记函数的导函数是,若不等式对任意的实数恒成立,求实数的取值范围;

3)设函数是函数的导函数,若函数存在两个极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点满足,直线的方程为,且与曲线交于不同两点.

1)求曲线的方程;

2)设点,直线的斜率分别为,且,判断直线是否过定点?若过定点,求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ABEDCF和一个四棱锥PABCD组合而成,其中EFEAEB2AEEBPAPD,平面PAD∥平面EBCF

1)证明:平面PBC∥平面AEFD

2)求直线AP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:

星名

水星

金星

地球

火星

木星

土星

与太阳的距离

4

7

10

16

52

100

除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1121248124816……,其中第一项是,接下来的两项是,再接下来的三项是……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为.

1)是否存在过点,斜率为的直线,使得抛物线上存在两点关于直线对称?若存在,求出的范围;若不存在,说明理由;

2)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面,,点分别是的中点.

1)证明:平面

2)设,当为何值时,平面,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

同步练习册答案