分析 (1)曲线C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数可得普通方程,表示一条直线.C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),利用平方关系可得普通方程,表示一个圆.
(2)曲线C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入代入曲线C2整理可得:${t}^{2}-3\sqrt{2}$t+4=0,利用|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.
解答 解:(1)曲线C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数可得:x-y+4=0,
曲线C1为经过(-4,0)和(0,4)两点的直线.
C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),利用平方关系可得:(x+2)2+(y-1)2=1,
曲线C2为以(-2,1)为圆心,1为半径的圆.
(2)曲线C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
代入曲线C2整理可得:${t}^{2}-3\sqrt{2}$t+4=0,
设A,B对应参数分别为t1,t2,则t1+t2=3$\sqrt{2}$,t1•t2=4,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{2}$.
点评 本题考查了参数方程与普通方程的互化、直线的参数方程中参数t的几何意义,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 休闲方式 性别 | 逛街 | 上网 | 合计 |
| 男 | 10 | 50 | 60 |
| 女 | 10 | 10 | 20 |
| 合计 | 20 | 60 | 80 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com