精英家教网 > 高中数学 > 题目详情

已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵若直线与平面所成的角为,求四棱锥的体积.

⑴见解析;⑵1

解析试题分析:⑴要证直线平面,需要在平面内找到一条与平行的直线.显然不容易找到;故考虑利用面面平行退出线面平行, 取的中点,构造平面,根据 ,可证.
⑵利用体积公式.需求出梯形的面积,根据底面,可知.
试题解析:⑴证明:取的中点,则,故平面;
又四边形正方形,∴,故∥平面;
∴平面平面,
平面.
⑵根据⑴可知,平面.所以根据题意有;
因为四边形为正方形,所以为等腰直角三角形.所以,
根据可知,又因为底面,所以棱锥的高为.
因为梯形的面积为,故.

考点:利用面面平行证明线面平行;棱锥体积;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于

(1)求圆锥的侧面积和体积.
(2)求异面直线所成的角;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和。
(1)求该圆台的母线长;(2)求该圆台的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为
A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BCAD
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等腰梯形ABCD中,ABCDABBCAD=2,CD=4,E为边DC的中点,如图1.将△ADE沿AE折起到△AEP位置,连PBPC,点Q是棱AE的中点,点M在棱PC上,如图2.

(1)若PA∥平面MQB,求PMMC
(2)若平面AEP⊥平面ABCE,点MPC的中点,求三棱锥A­MQB的体积.

查看答案和解析>>

同步练习册答案