已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于.
(1)求圆锥的侧面积和体积.
(2)求异面直线与所成的角;
科目:高中数学 来源: 题型:解答题
(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.
(1)证明:中截面DEFG是梯形;
(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V估=S中﹣h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知矩形是圆柱体的轴截面,分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为,且该圆柱体的体积为,如图所示.
(1)求圆柱体的侧面积的值;
(2)若是半圆弧的中点,点在半径上,且,异面直线与所成的角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角梯形ABEF中,,,讲DCEF沿CD折起,使得,得到一个几何体,
(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.
(1)求证:EF//平面ABC;
(2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点.
(1)若PD∥平面EAC,试确定点E在棱PB上的位置.
(2)在(1)的条件下,求二面角A-CE-P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com