(Ⅰ)求证:AC⊥平面BB1C1C;
(Ⅱ)求AB1与平面BB1C1C所成角的正切值;
(Ⅲ)在平面AA1B1B内找一点P,使三棱锥P-BB1C为正三棱锥,并求点P到平面BB1C的距离.
解:(Ⅰ)∵面BB1C1C⊥面ABC,交线为BC,AC⊥BC,∴AC⊥面BB1C1C
(Ⅱ)连B1C,由(Ⅰ)知AC⊥平面BB1C1C,∴∠CB1A就是AB1与平面BB1C1C所成的角.
取BB1中点E,连CE、AE,在△CBB1中,BB1=BC=2,∠B1BC=60°,∴△CBB1是正三角形,∴CE⊥BB1,又AC⊥平面BB1C1C,∴AE⊥BB1,∴∠CFA为二面角A-BB1-C的平面角,∠CEA=30°
在Rt△CEA中,AC=CEtan30°=1,∴在Rt△AB1C中,tan∠AB1C=
(Ⅲ)在CE上取点P1,使=2,则P1为△B1BC的重心即中心.作P1P∥AC交AE于P
∵AC⊥平面BB1C1C,∴PP1⊥面BB1C1C,即P在平面B1C1C上的射影是△BCB1中心
∴P-BB1C为正三棱锥,且,∴PP1=,即P到平面BB1C的距离为。
科目:高中数学 来源: 题型:
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
C | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com