精英家教网 > 高中数学 > 题目详情
曲线C:y=x2、直线L:x=2与x轴所围成的图形面积为
8
3
8
3
分析:作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y=x2在区间[0,2]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.
解答:解:∵曲线y=x2和直线L:x=2的交点为A(2,4),
∴曲线C:y=x2、直线L:x=2与x轴所围成的图形面积为
S=
2
0
x2dx=
1
3
x3
|
2
0
=
1
3
×23-
1
3
×02
=
8
3

故答案为:
8
3
点评:本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x2-2ax+y2-4y+a2+
5125
=0与D有公共点,试求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设P、Q分别为曲线C1和C2上的点,把P、Q两点距离的最小值称为曲线C1到C2的距离.
(1)求曲线C:y=x2到直线l:2x-y-4=0的距离;
(2)若曲线C:(x-a)2+y2=1到直线l:y=x-1的距离为3,求实数a的值;
(3)求圆O:x2+y2=1到曲线y=
2x-3x-2
(x>2)
的距离.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考数学考点预测:解析几何(解析版) 题型:解答题

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案