精英家教网 > 高中数学 > 题目详情
若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有(  )
A.6个B.7个C.8个D.9个
因为:f(x)∈N,f(y)∈N,f(z)∈N,且f(x)+f(y)+f(z)=0,
所以分为2种情况:0+0+0=0 或者 0+1+(-1)=0.
当f(x)=f(y)=f(z)=0时,只有一个映射;
当f(x)、f(y)、f(z)中恰有一个为0,而另两个分别为1,-1时,有C31•A22=6个映射.因此所求的映射的个数为1+6=7.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有


  1. A.
    6个
  2. B.
    7个
  3. C.
    8个
  4. D.
    9个

查看答案和解析>>

科目:高中数学 来源:2007-2008学年重庆市暨华中学高二(下)期中数学试卷(理科)(解析版) 题型:选择题

若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有( )
A.6个
B.7个
C.8个
D.9个

查看答案和解析>>

科目:高中数学 来源:2007-2008学年重庆市暨华中学高二(下)期中数学试卷(文科)(解析版) 题型:选择题

若集合M={x,y,z},集合N={-1,0,1},f是从M到N的映射,则满足f(x)+f(y)+f(z)=0的映射有( )
A.6个
B.7个
C.8个
D.9个

查看答案和解析>>

同步练习册答案