精英家教网 > 高中数学 > 题目详情
若双曲线C1与椭圆
x2
16
+
y2
25
=1
有相同的焦点,与双曲线C2
x2
2
-y2=1
有相同渐近线.
(1)求C2的实轴长和渐近线方程;
(2)求C1的方程.
分析:(1)由题意可得C2中:a=
2
,b=1,进而可得所求;
(2)法一:设所求的双曲线的方程为y2-
x2
2
=λ(λ>0)
,由题意可得关于λ的方程,解之可得;
法二:设C1
y2
a2
-
x2
b2
=1(a>0,b>0)
,可得
c=3
a
b
=
2
2
c2=a2+b2
,解之可得a,b,可得方程.
解答:解:(1)由题意可得C2中:a=
2
,b=1,
故实轴长为2a=2
2
,渐近线方程y=±
b
a
x=±
2
2
x
;…(5分)
(2)法一:依题意可设所求的双曲线的方程为y2-
x2
2
=λ(λ>0)
…(6分)
y2
λ
-
x2
=1
…(7分)
又∵双曲线与椭圆
x2
16
+
y2
25
=1
有相同的焦点,
∴λ+2λ=25-16=9解得λ=3…(11分)
∴C1的标准方程为
y2
3
-
x2
6
=1
…(13分)
法二:设C1
y2
a2
-
x2
b2
=1(a>0,b>0)
,…(6分)
可得
c=3
a
b
=
2
2
c2=a2+b2
求得 
a2=3
b2=6
…(11分)
∴C1的标准方程为
y2
3
-
x2
6
=1
…(13分)
点评:本题考查双曲线与椭圆的简单性质,涉及圆锥曲线的基本运算,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心在原点,离心率为
4
5
,焦点在x轴上且长轴长为10.过双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦点F2作垂直于x轴的直线交双曲线C2于M、N两点.
(I)求椭圆C1的标准方程;
(II)若双曲线C2与椭圆C1有公共的焦点,且以MN为直径的圆恰好过双曲线的左顶点A,求双曲线C2的标准方程;
(III)若以MN为直径的圆与双曲线C2的左支有交点,求双曲线C2的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)已知焦点在x轴上的椭圆C1
x2
a2
+
y2
12
=1和双曲线C2
x2
m2
-
y2
n2
=1的离心率互为倒数,它们在第一象限交点的坐标为(
4
10
5
6
5
5
),设直线l:y=kx+m(其中k,m为整数).
(1)试求椭圆C1和双曲线C2 的标准方程;
(2)若直线l与椭圆C1交于不同两点A、B,与双曲线C2交于不同两点C、D,问是否存在直线l,使得向量
AC
+
BD
=
0
,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点,坐标轴为对称轴的椭圆C和等轴双曲线C1,点(
5
,-1)
在曲线C1上,椭圆C的焦点是双曲线C1的顶点,且椭圆C与y轴正半轴的交点M到直线x-
3
y-2=0
的距离为4.
(Ⅰ)求双曲线C1和椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C相交于P、Q两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为
1
2
,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市昌平区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆C1的中心在原点,离心率为,焦点在x轴上且长轴长为10.过双曲线C2右焦点F2作垂直于x轴的直线交双曲线C2于M、N两点.
(I)求椭圆C1的标准方程;
(II)若双曲线C2与椭圆C1有公共的焦点,且以MN为直径的圆恰好过双曲线的左顶点A,求双曲线C2的标准方程;
(III)若以MN为直径的圆与双曲线C2的左支有交点,求双曲线C2的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年山东省年高考数学压轴卷(文科)(解析版) 题型:解答题

已知中心在坐标原点,坐标轴为对称轴的椭圆C和等轴双曲线C1,点在曲线C1上,椭圆C的焦点是双曲线C1的顶点,且椭圆C与y轴正半轴的交点M到直线的距离为4.
(Ⅰ)求双曲线C1和椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C相交于P、Q两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

同步练习册答案