精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x.
(1)求f(x)的最小正周期及单调减区间;
(2)若α∈(0,π),且f($\frac{α}{4}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{2}$,求tan(α+$\frac{π}{3}$)的值.

分析 (1)首先,化简函数解析式,然后利用辅助角公式进行化简,然后,根据三角函数的周期公式和单调性进行求解即可;
(2)根据(1),得到f($\frac{α}{4}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{2}$sin[4($\frac{α}{4}$-$\frac{π}{8}$)+$\frac{π}{4}$],得到相应的α的值,然后,利用两角和的正切公式进行求解即可.

解答 解:(1)∵函数f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x.
=cos2xsin2x+$\frac{1}{2}$cos4x
=$\frac{1}{2}$sin4x+$\frac{1}{2}$cos4x
=$\frac{\sqrt{2}}{2}$sin(4x+$\frac{π}{4}$),
∴f(x)=$\frac{\sqrt{2}}{2}$sin(4x+$\frac{π}{4}$),
∴T=$\frac{2π}{4}$=$\frac{π}{2}$,
令$\frac{π}{2}$+2kπ≤4x+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{4}$+2kπ≤4x≤$\frac{5π}{4}$+2kπ,
∴$\frac{π}{16}$+$\frac{kπ}{2}$≤x≤$\frac{5π}{16}$+$\frac{kπ}{2}$,k∈Z,
∴单调减区间[$\frac{π}{16}$+$\frac{kπ}{2}$,$\frac{5π}{16}$+$\frac{kπ}{2}$],(k∈Z),
(2)根据(1),
∵f(x)=$\frac{\sqrt{2}}{2}$sin(4x+$\frac{π}{4}$),
∴f($\frac{α}{4}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{2}$sin[4($\frac{α}{4}$-$\frac{π}{8}$)+$\frac{π}{4}$]
=$\frac{\sqrt{2}}{2}$sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴sin(α-$\frac{π}{4}$)=1,
∵α∈(0,π),
∴α-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$),
∴α-$\frac{π}{4}$=$\frac{π}{2}$,
∴α=$\frac{3π}{4}$,
∴tan(α+$\frac{π}{3}$)=tan($\frac{3π}{4}$+$\frac{π}{3}$)
=$\frac{tan\frac{3π}{4}+tan\frac{π}{3}}{1-tan\frac{3π}{4}tan\frac{π}{3}}$=$\frac{-1+\sqrt{3}}{1-(-1)×\sqrt{3}}$
=$\frac{\sqrt{3}-1}{\sqrt{3}+1}$=2-$\sqrt{3}$.
∴tan(α+$\frac{π}{3}$)的值2-$\sqrt{3}$.

点评 本题重点考查了三角公式、辅助角公式、两角和的正切公式、三角函数的图象与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设Sn、Tn分别为等差数列{an}与{bn}的前n项和,若$\frac{S_n}{T_n}=\frac{2n-1}{3n+2},则\frac{a_7}{b_7}$等于(  )
A.$\frac{13}{23}$B.$\frac{27}{44}$C.$\frac{25}{41}$D.$\frac{23}{38}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在三角形ABC中,AB=2,AC=4.P是三角形ABC的外心,数量积$\overrightarrow{AP}•\overrightarrow{BC}$等于(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,c>0,设函数f(x)=|x-b|+|x+c|+a,x∈R.若a=b=c=1,求不等式f(x)<5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正三角形ABC内一点M满足$\overrightarrow{CM}$=m$\overrightarrow{CA}$+n$\overrightarrow{CB}$,∠MCA=45°,则$\frac{m}{n}$的值为(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$+1C.$\frac{\sqrt{3}+1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,an=41-2n,则当数列{an}的前n项和Sn取最大值时n的值等于(  )
A.21B.20C.19D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=lg(x2+100)的值域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解不等式:3-2|4x+1|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是函数Q(x)的图象的一部分,设函数f(x)=sinx,g(x)=$\frac{1}{x}$,则Q(x)是(  )
A.$\frac{f(x)}{g(x)}$B.f (x)g (x)C.f (x)-g(x)D.f(x)+g(x)

查看答案和解析>>

同步练习册答案