精英家教网 > 高中数学 > 题目详情
精英家教网在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
2
,M为AB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角S-CM-B的大小;
(Ⅲ)求点B到平面SCM的距离.
分析:(Ⅰ)欲证AC⊥SB,取AC中点D,连接DS、DB.根据线面垂直的性质定理可知,只须证AC⊥SD且AC⊥DB,即得;
(Ⅱ)欲求二面角N-CM-B的大小,可先作出二面角的平面角,结合SD⊥平面ABC.过D作DE⊥CM于E,连接SE,则SE⊥CM,
从而得出∠SED为二面角S-CM-A的平面角.最后在Rt△SDE中求解即可;
(Ⅲ)设点B到平面SCM的距离为h,利用等到体积法:VB-SCM=VS-CMB,即可求得点B到平面SCM的距离.
解答:精英家教网证明:(Ⅰ)取AC中点D,连接DS、DB.
∵SA=SC,BA=BC,
∴AC⊥SD且AC⊥DB,
∴AC⊥平面SDB,又SB?平面SDB,
∴AC⊥SB.
(Ⅱ)解:∵SD⊥AC,平面SAC⊥平面ABC,
∴SD⊥平面ABC.
过D作DE⊥CM于E,连接SE,则SE⊥CM,
∴∠SED为二面角S-CM-A的平面角.
由已知有DE
.
1
2
AM
,所以DE=1,又SA=SC=2
2
,AC=4,∴SD=2.
在Rt△SDE中,tan∠SED=
SD
DE
=2,
∴二面角S-CM-A的大小为arctan2,
∴二面角S-CM-B的大小为π-arctan2.
(Ⅲ)解:在Rt△SDE中,SE=
SD2+DE2
=
5
,CM是边长为4正△ABC的中线,CM=2
3

∴S△SCM=
1
2
CM•SE=
1
2
×2
3
×
5
=
15

设点B到平面SCM的距离为h,
由VB-SCM=VS-CMB,SD⊥平面ABC,得
1
3
S△SCM•h=
1
3
S△CMB•SD,
∴h=
S△CMB•SD
S△SCM
=
4
5
5
.即点B到平面SCM的距离为
4
5
5
点评:本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O为BC中点.
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B-SC-E的平面角的余弦值为
15
5
?若存在,确定E点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,
3
2
,3,则此三棱锥的外接球的表面积为(  )

查看答案和解析>>

同步练习册答案