| A. | $\frac{7}{5}$ | B. | $\frac{6}{5}$ | C. | 4 | D. | 5 |
分析 利用函数的解析式求得定点P的坐标,任意角的三角函数的定义,求得sinα和cosα的值,再利用二倍角公式求得要求式子的值.
解答 解:对于函数y=loga(x-3)+2,令x-3=1,求得x=4,y=2,可得函数的图象过定点P(4,2),
故角α的终边过点P,∴x=4,y=2,r=|OP|=2$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{\sqrt{5}}{5}$,cosα=$\frac{x}{r}$=$\frac{2\sqrt{5}}{5}$,
∴sin2α+cos2α=2sinαcosα+2cos2α-1=2×$\frac{\sqrt{5}}{5}$×$\frac{2\sqrt{5}}{5}$+2×$\frac{20}{25}$-1=$\frac{7}{5}$,
故选:A.
点评 本题主要考查函数的图象经过定点问题,任意角的三角函数的定义,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2) | ||
| C. | $\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2) | D. | $\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 2 | 3 | 4 |
| y | 6 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com