精英家教网 > 高中数学 > 题目详情
已知点(an,an-1)在曲线f(x)=
(    )
x
上,且a1=1.
(1)求f(x)的定义域;
(2)求证:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1
(n∈N*)
(3)求证:数列{an}前n项和Sn
(3n+2)
3n
2
-
3
2
(n≥1,n∈N*)
(1)由f(x)=
x2+
1
x
知x满足:x2+
1
x
≥0,
x3+1
x
≥0,
(x+1)(x2-x+1)
x
≥0
x+1
x
≥0,
故x>0,或x≤-1.
f(x)定义域为:(-∞,-1]∪(0,+∞).
(2)证明:∵an+12=an2+
1
an
,则an+12-an2=
1
an

于是有:
1
a1
+
1
a2
+…+
1
an
=an+12-a12=an+12-1
要证明:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1

只需证明:
1
2
n
1
3
an≤2n
1
3
(*) 
下面使用数学归纳法证明:
1
2
n
1
3
an≤2n
1
3
(n≥1,n∈N*) 
  ①在n=1时,a1=1,
1
2
<a1<2,则n=1时 (*)式成立.
②假设n=k时,
1
2
k
1
3
ak≤2k
1
3
成立,
由 
a2k+1
=
a2k
+
1
ak
≤4k
1
3
+
1
1
2
k
1
3
=4k
2
3
+
2
k
1
3

要证明:4k
1
3
+
1
1
2
k
1
3
≤4(k+1)
2
3

只需2k+1≤
1
2
k
1
3
(k+1)
2
3
只需(2k+1)3≤8k(k+1)2
只需1≤4k2+2k,而4k2+2k≥1在k≥1时,恒成立,
于是ak+12=
1
4
(k+1)
2
3
,于是ak+1≤ 2(k+1)
1
3

ak+12=ak2+
1
ak
1
4
k
2
3
+
1
2k
1
3

要证
1
4
k
2
3
+
1
2k
1
3
1
4
(k+1)
2
3

只需证:k+2≥k
1
3
(k+1)
2
3

只需证:4k2+11k+8>0,而4k2+11k+8>0在k≥1时恒成立.
于是:
a2k+1
1
4
(k+1)
2
3

因此 
1
2
(k+1)
1
3
a2k+1
≤2(k+1)
1
3
得证.
综合①②可知(*)式得证,从而原不等式成立.
(3)证明:要证明:Sn
(3n+2)
3n
2
-
3
2

由(2)可知只需证:
3n
(3n+2)
3n
4
-
[3(n-1)+2]
3n-1
4
(n≥2)(**)
下面用分析法证明:(**)式成立.
要使(**)成立,
只需证:(3n-2)
3n
>(3n-1)
3n-1

即只需证:(3n-2)3n>(3n-1)3(n-1),
只需证:2n>1.
而2n>1在n≥1时显然成立,
故(**)式得证.
于是由(**)式可知有:
32
+
33
+…+
3n
(3n+2)
3n
4
-
5
4

因此有:Sn=a1+a2+…+an≤1+2(
32
+
33
+…+
3n
)=
(3n+2)
3n
2
-
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的数列{an}中,已知点(an,an+1)(n∈N*)在函数y=2x的图象上,且a25=8
(1)求证:数列{an}是等比数列,并求出其通项公式;
(2)若数列{bn}的前n项和为Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列An(xn,0),n∈N*,其中x1=0,x2=2,A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,…,
(Ⅰ)写出xn与xn-1、xn-2之间的关系式(n≥3);
(Ⅱ)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.

查看答案和解析>>

科目:高中数学 来源:浙江省绍兴一中2011-2012学年高二下学期期末考试数学文科试题 题型:044

已知点列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…An是线段An-2An-1的中点,…,

(1)写出xn与xn-1、xn-2之间的关系式(n≥3);

(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.

查看答案和解析>>

科目:高中数学 来源:乐山二模 题型:解答题

已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a

查看答案和解析>>

同步练习册答案