精英家教网 > 高中数学 > 题目详情

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.

(1)详见解析, (2) 详见解析.

解析试题分析:(1) 证明线面平行,需先证线线平行. 正方形ABCD中,BO=AB,又因为AB=EF,∴BO=EF,又因为EF∥BD,∴EFBO是平行四边形,∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,∴BF∥平面ACE.列线面平行判定定理的条件必须要全面. (2)证明线线垂直,一般利用线面垂直进行转化.条件为面面垂直,所以先由面面垂直性质定理转化为线面垂直:正方形ABCD中,AC⊥BD,又因为正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO?平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.
证明 (1)AC与BD交于O点,连接EO.
正方形ABCD中,BO=AB,又因为AB=EF,
∴BO=EF,又因为EF∥BD,
∴EFBO是平行四边形,
∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,
∴BF∥平面ACE            7分
(2)正方形ABCD中,AC⊥BD,又因为正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,
∴BD⊥平面ACE,∵EO?平面ACE,
∴BD⊥EO,∵EO∥BF,∴BF⊥BD.                  14分

考点:线面平行判定定理,面面垂直性质定理,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直四棱柱的底面为正方形,为棱的中点.

(1)求证:
(2)设中点,为棱上一点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,底面

(1)证明:
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=

(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

同步练习册答案