17£®ÒÑÖªÔ²O¹ýµãA£¨1£¬1£©£¬ÇÒÓëÔ²M£º£¨x+2£©2+£¨y+2£©2=r2£¨r£¾0£©¹ØÓÚÖ±Ïßx+y+2=0¶Ô³Æ£®
£¨1£©ÇóÔ²OµÄ·½³Ì£»
£¨2£©ÈôEF¡¢GHΪԲOµÄÁ½ÌõÏ໥´¹Ö±µÄÏÒ£¬´¹×ãΪN£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬ÇóËıßÐÎEGFHµÄÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÒÑÖªÖ±Ïßl£ºy=$\frac{1}{2}$x-2£¬PÊÇÖ±ÏßlÉϵ͝µã£¬¹ýP×÷Ô²OµÄÁ½ÌõÇÐÏßPC¡¢PD£¬ÇеãΪC¡¢D£¬ÊÔ̽¾¿Ö±ÏßCDÊÇ·ñ¹ý¶¨µã£¬Èô¹ý¶¨µã£¬Çó³ö¶¨µã£»Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³öÔ²ÐÄO×ø±ê£¬ÓÉOÓëM¹ØÓÚÖ±Ïßx+y+2=0¶Ô³Æ£¬¸ù¾ÝÖеã×ø±ê¹«Ê½¼°Ð±ÂʵĹØÏµÁгö¹ØÏµÊ½£¬ÕûÀíÇó³öaÓëbµÄÖµ£¬ÔÙÓÉÔ²O¹ýµãA£¬È·¶¨³öÔ²O·½³Ì¼´¿É£»
£¨2£©ÉèÔ²ÐÄOµ½Ö±ÏßEF¡¢GHµÄ¾àÀë·Ö±ðΪd1£¬d2£¬Ôòd12+d22=|ON|2£¬ÓÉN×ø±êÇó³öd12+d22µÄÖµ£¬±íʾ³ö|EF|Óë|GH|£¬½ø¶ø±íʾ³öS£¬ÀûÓûù±¾²»µÈʽÇó³ö×î´óÖµ¼´¿É£»
£¨3£©Ö±ÏßCD¹ý¶¨µã£¬¶¨µã×ø±êΪ£¨$\frac{1}{2}$£¬-1£©£¬ÀíÓÉΪ£ºÓÉÌâÒâ¿ÉµÃ£ºO¡¢P¡¢C¡¢DËĵ㹲ԲÇÒÔÚÒÔOPΪֱ¾¶µÄÔ²ÉÏ£¬Éè³öP×ø±ê£¬±íʾ³öÒÔOPΪֱ¾¶µÄÔ²£¬ÓëÔ²O·½³Ì½áºÏÈ·¶¨³öÖ±ÏßCD·½³Ì£¬¼´¿ÉµÃµ½Ö±ÏßCDºã¹ýµÄ¶¨µã×ø±ê£®

½â´ð ½â£º£¨1£©ÉèÔ²ÐÄO£¨a£¬b£©£¬¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{\frac{a-2}{2}+\frac{b-2}{2}+2=0}\\{\frac{b+2}{a+2}=1}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=0}\\{b=0}\end{array}\right.$£¬
¡àÔ²O·½³ÌΪx2+y2=r2£¬
°ÑA£¨1£¬1£©´úÈëµÃ£ºr2=2£¬¼´Ô²O·½³ÌΪx2+y2=2£»
£¨2£©ÉèÔ²ÐÄOµ½Ö±ÏßEF¡¢GHµÄ¾àÀë·Ö±ðΪd1£¬d2£¬Ôòd12+d22=|ON|2=$\frac{3}{2}$£¬
¡à|EF|=2$\sqrt{{r}^{2}-{{d}_{1}}^{2}}$=2$\sqrt{2-{{d}_{1}}^{2}}$£¬|GH|=2$\sqrt{{r}^{2}-{{d}_{2}}^{2}}$=2$\sqrt{2-{{d}_{2}}^{2}}$£¬
µ±ÇÒ½öµ±2-d12=2-d22£¬¼´d1=d2=$\frac{\sqrt{3}}{2}$ʱȡµÈºÅ£¬
¡àS=$\frac{1}{2}$|EF|•|GH|=2$\sqrt{£¨2-{{d}_{1}}^{2}£©£¨2-{{d}_{2}}^{2}£©}$¡Ü2-d12+2-d22=4-$\frac{3}{2}$=$\frac{5}{2}$£¬
ÔòËıßÐÎEGFHµÄÃæ»ý×î´óֵΪ$\frac{5}{2}$£»
£¨3£©Ö±ÏßCD¹ý¶¨µã£¬¶¨µã×ø±êΪ£¨$\frac{1}{2}$£¬-1£©£¬ÀíÓÉΪ£º
ÓÉÌâÒâ¿ÉµÃ£ºO¡¢P¡¢C¡¢DËĵ㹲ԲÇÒÔÚÒÔOPΪֱ¾¶µÄÔ²ÉÏ£¬
ÉèP£¨t£¬$\frac{1}{2}$t-2£©£¬Æä·½³ÌΪx£¨x-t£©+y£¨y-$\frac{1}{2}$t+2£©=0£¬¼´x2-tx+y2-£¨$\frac{1}{2}$t-2£©y=0¢Ù£¬
ÓÖC¡¢DÔÚÔ²O£ºx2+y2=2ÉÏ¢Ú£¬
¢Ú-¢ÙµÃ£ºÖ±ÏßCDµÄ·½³ÌΪtx+£¨$\frac{1}{2}$t-2£©y-2=0£¬¼´£¨x+$\frac{y}{2}$£©t-2y-2=0£¬
ÓÉ$\left\{\begin{array}{l}{x+\frac{y}{2}=0}\\{2y+2=0}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=-1}\end{array}\right.$£¬
ÔòÖ±ÏßCD¹ý¶¨µã£¨$\frac{1}{2}$£¬-1£©£®

µãÆÀ ´ËÌ⿼²éÁËÖ±ÏßÓëÔ²µÄ·½³ÌµÄÓ¦Óã¬Éæ¼°µÄ֪ʶÓУºÔ²µÄ±ê×¼·½³Ì£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬»ù±¾²»µÈʽµÄÔËÓã¬ÒÔ¼°ºã¹ý¶¨µãµÄÖ±Ïß·½³Ì£¬ÊìÁ·ÕÆÎÕ¹«Ê½¼°·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=2sinx+2sin£¨x-$\frac{¦Ð}{3}$£©
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªf£¨A£©=$\sqrt{3}$£¬a=$\sqrt{3}$b£¬Ö¤Ã÷£ºC=3B£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªËĸöÊý101 010£¨2£©¡¢111£¨5£©¡¢32£¨8£©¡¢54£¨6£©£¬ÆäÖÐ×îСµÄÊÇ32£¨8£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin2x+2cos2x+a
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚÒÔ¼°µ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{4}$]ʱ£¬º¯Êýf£¨x£©ÓÐ×î´óÖµ4£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êýy=3tan£¨$\frac{¦Ð}{6}$-$\frac{x}{4}$£©µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£®2¦ÐB£®6¦ÐC£®4¦ÐD£®$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ÒÔµÈÑüÖ±½ÇÈý½ÇÐÎABCµÄб±ßBCÉϵĸßADΪÕÛºÛ£¬°Ñ¡÷ABDºÍ¡÷ACDÕÛ
³É»¥Ïà´¹Ö±µÄÁ½¸öÆ½Ãæºó£¬Ä³Ñ§ÉúµÃ³öÏÂÁÐËĸö½áÂÛ
¢ÙBD¡ÍAC£»              
¢Ú¡÷BACÊǵȱßÈý½ÇÐΣ»
¢ÛÈýÀâ×¶D-ABCÊÇÕýÈýÀâ×¶£»
¢ÜÆ½ÃæADC¡ÍÆ½ÃæABC
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÜB£®¢Ù¢Ú¢ÛC£®¢Ú¢Û¢ÜD£®¢Ù¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¹ýµãM£¨1£¬2£©µÄÖ±ÏßlÓëÔ²C£º£¨x-3£©2+£¨y-4£©2=25½»ÓÚA£¬BÁ½µã£¬Ôò|AB|µÄ×îСֵÊÇ2$\sqrt{17}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèÖ±Ïßax+2y+6=0ÓëÔ²C£ºx2+y2-2x+4y+1=0ÏཻÓÚµãP£¬QÁ½µã£¬CP¡ÍCQ£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®1»ò2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÀûÓüÆËã»ú²úÉú0¡«1Ö®¼äµÄ¾ùÔÈËæ»úÊýa£¬b£¬Ôòʼþ¡°$\left\{\begin{array}{l}{3a-1£¾0}\\{3b-1£¾0}\end{array}\right.$¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{4}{9}$B£®$\frac{1}{9}$C£®$\frac{2}{3}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸