精英家教网 > 高中数学 > 题目详情

 中心在原点,焦点在y轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则椭圆的方程是 (  )

A.      B.  

C.      D. 

 

【答案】

A

【解析】

试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=•2a=6,得c=3,因此,b2=a2-c2=81-9=72,再结合椭圆焦点在y轴上,可得此椭圆方程为.

考点:本题考查椭圆的简单性质;椭圆的标准方程。

点评:本题给出椭圆的长轴长和焦点的位置,求椭圆的标准方程,着重考查了椭圆的基本概念和标准方程等知识,属于基础题.但要注意焦点在x轴上与焦点在y轴上椭圆标准方程形式的不同。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的椭圆过M(1,
4
2
3
),N(-
3
2
2
2
)两点.
(1)求椭圆的方程;
(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在y轴上的双曲线的离心率为
3
,则它的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-y=0,则它的离心率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为
4
3
,则双曲线的方程为
y2
36
-
x2
28
=1
y2
36
-
x2
28
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点,焦点在y轴上的双曲线的离心率为
3
,则它的渐近线方程为(  )
A.y=±2xB.y=±
5
2
x
C.y=±
2
2
x
D.y=±
2
x

查看答案和解析>>

同步练习册答案