精英家教网 > 高中数学 > 题目详情
已知sin(α+β)=-
3
5
,cos(α-β)=
12
13
,且
π
2
<β<α<
4
,求sin2α.
分析:角的变换是本题的主要知识,把2α=(α+β)+(α-β)表示,用两角和的正弦公式展开,在求α+β的余弦和α-β的正弦时注意角的范围.
解答:解:∵
π
2
<β<α<
4
π<α+β<
2
,0<α-β<
π
4

∵sin(α+β)=-
3
5
,cos(α-β)=
12
13
∴cos(α+β)=-
4
5
,sin(α-β)=
5
13

∴sin2α=sin[(α+β)+(α-β)]=-
56
65
点评:利用同角三角函数的基本关系式解决问题:(1)已知某角的一个三角函数值,求该角的其它三角函数值的方法.(2)求值时要注意各三角函数的符号,必要时分类讨论.(3)三角函数式的化简的方法和结果应满足要求.本题除了应用同角的三角函数关系之外,本题的一大亮点是角的变换
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
4
+x)=
5
5
,且
π
4
<x
4
,则sin(
π
4
-x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(3π+α)=lg
1
310
,则
cos(π+α)
cosα[cos(π-α)-1]
+
cos(α-2π)
cosαcos(π-α)+cos(α-2π)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ=
1-a
1+a
,cosθ=
3a-1
1+a
,若θ是第二象限角,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=-
12
且α是第三象限角,求cosα、tanα的值.

查看答案和解析>>

同步练习册答案