精英家教网 > 高中数学 > 题目详情
17.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.
(I)求该工厂A、B两类工人各有多少人?
(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)

表:100名参加测试工人成绩频率分布表
组号分组频数频率
1[55,60)50.05
2[60,65)200.20
3[65,70)
4[70,75)350.35
5[75,80)
6[80,85)
合计1001.00
①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;
②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.

分析 (Ⅰ)根据分层抽样即可求出A,B类工人;
(Ⅱ)①根据茎叶图即可完成频率分布表和频率分布直方图;
②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,一一列举出所有的基本事件,找到满足条件恩对基本事件,根据概率公式计算即可.

解答 解:(I)有题知A类工人有500×$\frac{40}{40+60}$=200(人);
则B类工人有500-200=300(人).
(Ⅱ)①表一,

组号分组频数频率
1[55,60)50.05
2[60,65)200.20
3[65,70)250.25
4[70,75)350.35
5[75,80)100.10
6[80,85)50.05
合计1001.00
图二

②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,
从中抽取2人,有(甲,乙),(甲,丙),(甲,a),(乙,丙),(乙,a),(丙,a)共6种抽法,
抽到2人均在80分以上有(甲,乙),(甲,丙),(乙,丙),共3种抽法.
则抽到2人均在80分以上的概率为$\frac{3}{6}$=$\frac{1}{2}$.

点评 本题考查了分层抽样,茎叶图,频率分布直方图,古典概率等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.执行如图的程序框图,若输入x=12,则输出y=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从3名男生和4名女生中选出4人组成一个学习小组.若这4人中必须男女生都有的概率为$\frac{34}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.i是虚数单位,复数Z=$\frac{1+2i}{2-i}$,则|Z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面的程序框图表示算法的运行结果是(  )
A.-3B.-21C.3D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,若a=3,b=4,且a2+b2=c2+ab,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.公差不为0的等差数列{an},其前23项和等于其前10项和,a8+ak=0,则正整数k=(  )
A.24B.25C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tan(π+α)=-$\frac{1}{2}$,求下列各式的值:
(1)$\frac{2cos(π-α)-3sin(π+α)}{4cos(α-2π)+sin(4π-α)}$;
(2)sin(α-7π)cos(α+5π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆M:x2+y2+2mx-3=0(m<0)的半径为2,则椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的左焦点为F(-x,0),若垂直于x轴且经过F点的直线l与圆M相切,则a的值为(  )
A.2或2$\sqrt{3}$B.2$\sqrt{3}$C.2D.4

查看答案和解析>>

同步练习册答案