精英家教网 > 高中数学 > 题目详情
已知向量
a
=(3cosα,3sinα)
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7

(Ⅰ)求向量
a
b
的夹角θ;
(Ⅱ)求(2
a
-4
b
)•(3
a
+
b
)
的值.
分析:(Ⅰ)将|
a
+2
b
|=7
两边平方,结合向量的模长,即可求向量
a
b
的夹角θ;
(Ⅱ)由(2
a
-4
b
)•(3
a
+
b
)
,利用向量的乘法运算,即可求得结论.
解答:解:(Ⅰ)∵
a
=(3cosα,3sinα)
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7

∴9+16+4×12cos(α-β)=49
∴cos(α-β)=
1
2

∴cosθ=
1
2

∵0≤θ≤π,∴θ=
π
3

(Ⅱ)(2
a
-4
b
)•(3
a
+
b
)
=6|
a
|2
-10
a
b
-4
b
2
=6×9-10×3×
1
2
-64=-25.
点评:本题考查向量的数量积,考查向量的夹角,考查向量的模,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量a(
3
cosωx,sinωx)
,b(sinωx,0),且ω>0,设函数f(x)=(a+b)•b+k.
(1)若f(x)的图象中相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是2,求就k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3cosα,2),
b
=(3,4sinα),且
a
b
,则锐角α等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(3cosα,3sinα)
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7

(Ⅰ)求向量
a
b
的夹角θ;
(Ⅱ)求(2
a
-4
b
)•(3
a
+
b
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(3cosα,sinα),α∈(0,π2),e=(1,0),向量ae的夹角为β,求tan(α-β)的最大值,并求相应的α的值.

查看答案和解析>>

同步练习册答案