精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖騰.在如下图所示的阳马P-ABCD中,侧棱底面ABCD,且,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,鳖臑有( )

A.1B.2C.3D.4

【答案】C

【解析】

四个面都是直角三角形的四面体中必有棱与面垂直,由此可得.

结合图形知阳马P-ABCD只有四面体是鳖臑,

中点,如图,与类比知的四个面都是直角三角形,是鳖臑,

中点,如图,由于,∴,另外由与底面垂直得垂直,从而可得与平面垂直,即得,由线面垂直判定定理得平面,从而,那么的四个面都是直角三角形,此时是鳖臑,

同理中点时,也是鳖臑,

中点时,不是直角三角形,不是鳖臑,

因此鳖臑有3个.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A是圆Ox2+y216上的任意一点,l是过点A且与x轴垂直的直线,B是直线lx轴的交点,点Q在直线l上,且满足4|BQ|3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C

1)求曲线C的方程;

2)已知直线ykx2k≠0)与曲线C交于MN两点,点M关于y轴的对称点为M,设P0,﹣2),证明:直线MN过定点,并求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题函数R上单调递减,命题对任意实数x,不等式恒成立.

1)求非q为真时,实数c的取值范围;

2)如果命题为真命题,且为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的最大值;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)若函数的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处的切线方程为,求的值;

(2)若为区间上的任意实数,且对任意,总有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为(单位:百米)的圆形景观,圆心为,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处图中阴影部分只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆相切的小道问:两点应选在何处可使得小道最短?

查看答案和解析>>

同步练习册答案