精英家教网 > 高中数学 > 题目详情
已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.
(1)存在,且点的坐标为;(2);(3)的取值范围是.

试题分析:(1)先假设点的坐标,根据图象对称的定义列式求出点的坐标即可;(2)利用(1)中条件的条件,并注意到定义中第项与倒数第项的和这一条件,并利用倒序相加法即可求出的表达式,进而可以求出的值;(3)先利用之间的关系求出数列的通项公式,然后在不等式中将与含的代数式进行分离,转化为恒成立的问题进行处理,最终利用导数或作差(商)法,通过利用数列的单调性求出的最小值,最终求出实数的取值范围.
试题解析:(1)假设存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上,则函数图像的对称中心为.
,得
恒成立,所以解得
所以存在点,使得函数的图像上任意一点关于点M对称的点也在函数的图像上.
(2)由(1)得.
,则.
因为①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因为当时,.
所以当时,不等式恒成立.
,则.
时,上单调递减;
时,上单调递增.
因为,所以
所以当时,.
,得,解得.
所以实数的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是自然对数的底数).
(1)若曲线处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,函数取得极大值,求实数的值;
(Ⅱ)已知结论:若函数在区间内存在导数,则存在
,使得. 试用这个结论证明:若函数
(其中),则对任意,都有
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都
.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列图像中有一个是函数的导数 的图像,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案