精英家教网 > 高中数学 > 题目详情
已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.
(1);(2).

试题分析:本题考查导数的应用、分段函数值域以及函数图像等基础知识,考查转化的思想方法,考查综合运用数学知识分析问题解决问题的能力.第一问,考查求切线方程的解题过程,因为,所以是对称轴,所以,再利用两直线的垂直关系列出斜率表达式,解出;第二问,将方程根的问题转化成求函数最值问题,再利用数形结合法解题.
试题解析: (1)∵满足  ,∴,
的图象在处的切线垂直于
,即  ∴ ,, ∴
(2)有实数解转化为
有实数解,
时 
时 
原问题等价于求函数的值域,
易知
∴方程有实数解时的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)当时,不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间上是减函数,求实数的最小值;
(Ⅲ)若存在是自然对数的底数)使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(m为常数,e=2.71828…是自然对数的底数),函数 的最小值为1,其中 是函数f(x)的导数.
(1)求m的值.
(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若,求的单调区间,
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数及其导数,若存在,使得=,则称 的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(  )
,②,③,④,⑤
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,其中,则是偶函数的充要条件是(    )
A.   B.C.D.

查看答案和解析>>

同步练习册答案