精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)当时,不等式恒成立,求的范围.
(Ⅰ)函数的单调递减区间,递增区间,极小值为,无极大值;(Ⅱ)的范围是

试题分析:(Ⅰ)求的单调区间和极值,研究单调性和极值问题,往往与导数有关,特别是极值,只能利用导数求得,故先对求导,得,令,解得,从而得递增区间,同样方法可得递减区间为,进而得极值;(Ⅱ)当时,不等式恒成立,求的范围,属于恒成立问题,解这一类题,常常采用含有参数的放到不等式的一边,不含参数(即含)的放到不等式的另一边,转化为函数的最值问题,故原不等式可化为,只需求出上的最大值即可,因含有,可通过求导来求,令可得,得,故最大,最大值为,从而得的范围.
试题解析:(Ⅰ)函数的单调递减区间,递增区间.极小值为,无极大值;
(Ⅱ)原不等式可化为:,令可得,令,可得上恒小于等于零,所以函数g(x)= 在(0,1)上递增,在(1,+)递减,所以函数g(x)在上有最大值g(1)=2-e,所求的范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知 ().
(Ⅰ)当时,判断在定义域上的单调性;
(Ⅱ)若上的最小值为,求的值;
(Ⅲ)若上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若上恒成立,求m取值范围;
(2)证明:).
(注:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知函数 .
(I)若是,的极值点,讨论的单调性;
(II)当时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)试求函数的单调区间和极值;
(2)若 直线与曲线相交于不同两点,若 试证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数为实常数).
(1)当时,求函数处的切线方程;
(2)设.
①求函数的单调区间;
②若函数的定义域为,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是_________.

查看答案和解析>>

同步练习册答案