精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若在区间上恒成立,求实数的取值范围.
(Ⅰ)切线方程为
(Ⅱ)当时,的单调增区间是,单调减区间是
时,的单调增区间是
时,的单调增区间是,单调减区间是.
(Ⅲ).

试题分析:(Ⅰ)切线的斜率,等于在切点的导函数值.
(Ⅱ)通过“求导数,求驻点,讨论各区间导数值的正负”,确定函数的单调区间。本题应特别注意讨论时的不同情况.
(Ⅲ)在区间上恒成立,只需在区间的最小值不大于0.
试题解析:(Ⅰ)因为,
所以,                                1分
,                                         3分
所以切线方程为.                                        4分
(Ⅱ),                5分
,                                      6分
时,在,在,
所以的单调增区间是,单调减区间是;         7分
时,在,所以的单调增区间是;   8分
时,在,在.
所以的单调增区间是,单调减区间是.         10分
(Ⅲ)由(Ⅱ)可知在区间上只可能有极小值点,
所以在区间上的最大值在区间的端点处取到,             12分
即有,
解得.                                14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)当时,不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间上是减函数,求实数的最小值;
(Ⅲ)若存在是自然对数的底数)使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若,求的单调区间,
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线在点处的切线的斜率为,则函数的部分图象可以为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在区间为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数及其导数,若存在,使得=,则称 的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(  )
,②,③,④,⑤
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案