精英家教网 > 高中数学 > 题目详情
已知函数(m为常数,e=2.71828…是自然对数的底数),函数 的最小值为1,其中 是函数f(x)的导数.
(1)求m的值.
(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.
(1) 1  ;(2)是,(1,e);单调减区间(0,+∞).

试题分析:(1)求导数,转化为分式不等式,最后根据不等式的基本性质求解即可.(2)利用导数的几何意义,求过(1,e)的切线即可验证.
试题解析:由,得∞),
=
所以2-m=1,解得m=1.
(2)由(1)得,得,令h(x)=,则=
时,>0,当∞)时,<0,所以h(x)max=h(1)=0.
又因为ex>0,所以可得当∞)时,恒成立.故当∞)时,函数单调递减.
因为,所以曲线在(1,e)点出的切线方程为y-e=0(x-1),即y=e.
所以直线y=e是曲线f(x)的切线,切点坐标(1,e),且∞)上单调递减.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若函数为实常数).
(1)当时,求函数处的切线方程;
(2)设.
①求函数的单调区间;
②若函数的定义域为,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数,,函数的图像在它们与坐标轴交点处的切线分别为,且.
(1)求常数的值及的方程;
(2)求证:对于函数公共定义域内的任意实数,有
(3)若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的值域;
(2)设,函数.若对任意,总存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数 
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)当时,求函数的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)设函数
(1)求的周期和对称中心;
(2)求上值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案